Back to News

Industrial 101 - A simple guide to isolating Cupper Presses

Posted on September 28, 2021
4 minutes read
Industrial 101 - A simple guide to isolating Cupper Presses

Cupper Presses are often used in canning factories, producing cups for 2-piece beverage cans from aluminium or steel coil, or draw-redraw food cans from steel, aluminium, coil or sheet.

It is important to isolate a Cupper Press because the vibrations created by the machinery will not only interfere with the efficiency, productivity and accuracy of surrounding machinery, but it can also affect the health and wellbeing of those working in the factory, and those living and working in the surrounding area.

Ahead of choosing the best option for isolating a Cupper Press, it is recommended to organise an investigation to understand the level of the vibrations the Cupper Press will be transmitting. The results from this investigation provide crucial inputs helping design team choose the best solution for your environment.

Installing a Cupper Press Isolation system

In order to isolate a Cupper Press, the area should first be clean and tidy, so make sure that the floor is clean and dry. First step is to install base void fillers along the edges at the bottom of the pit. These voidfillers are supplied in form of sheets that are easy to cut on site. Farrat provides project specific installation drawings to help the installers or the contractor to identify the correct product type and the sizes to be cut. Once the strips are cut to the specified size, install them along the edge of the pit. Next, start installing wall void fillers with the help of adhesive tapes supplied.

Adhesive tapes hold the void fillers intact on the walls and minimize the possibility of the isolation layer falling into the pit until the concrete is poured. Once the wall void fillers are installed, the next step is to install the stiffer top strip. Higher stiffness of the top strips brings more stability to the inertia block, minimizing chances of rocking under dynamic loads. All joints should be sealed to avoid seepage of wet concrete into the isolation strips.

A typical foundation pit with completed wall isolation looks like this:Next step is to cover the remaining are of the foundation base with voidfillers. Due care should be taken by the installer to not damage the base voidfiller. A flat surface, such as light weight plywood, should be used when one needs to move around in the pit.

Below image represents completed base void filler installation:Next step is to install the base isolators. This starts with marking the area in the base isolators as shown in the installation drawing. Once the locations are marked, respective size of voidfiller should be cut out from the base voidfiller to make space for isolators. Isolators should be carefully installed in the cut our space and the joints should be sealed with joint line tape.

A completed foundation is shown adjeacent.

The last step is installing the DMP membrane throughout the pit base and wall. This is a secondary layer to prevent any seepage of wet concrete in the isolation strips. The rebar cage should be designed in such a way that the support points are on isolators and not on the base voidfiller. Rebar cage should be carefully lowered into the pit to avoid any damage to wall voidfiller sot the DPM sheet.

The concrete should then be poured carefully and evenly across the entire area to ensure that the concrete does not build up in mounds (which could crush the voidfiller). It may be advised that the concrete is poured in 2 stages to ensure a flat and even load spreading base.

A Bespoke Approach for Cupper Presses

Isolating Cupper Presses isn’t a one size fits all approach. It is only by adopting a bespoke approach that you will effectively isolate a Cupper Press to a level where it no longer affects the efficiency of nearby machinery.

Farrat engineers are available to support you right from vibration investigation to installation. For more information on solutions for the can making industry, visit our Can Making Hub here or submit an enquiry with our engineers here.



Useful links

Challenge our engineers

Contact us now for an initial consultation.

Contact Us