News

Evaluating the reuse of existing isolated foundation systems for upgraded plant machinery.

Manufacturing businesses are often looking for ways to minimise their waste in terms of spoilage or rejection by upgrading to newest state of the art machinery. However, manufacturers could be thinking beyond their actual products and the items used on-site, to re-evaluate if they could be reusing manufacturing equipment and infrastructure. In doing so they could not only reduce the need for new installations but also make significant financial savings.

Reusing existing isolated foundations for new machinery in a beverage can plant

Isolated foundations and other vibration control solutions are frequently used in factories and manufacturing plants to reduce levels of transmitted vibrations that affect the health and safety of workers as well as the accuracy and productivity of surrounding machinery and activity. This is especially true in beverage can manufacturing plants where heavy impact machinery such as cupper presses and bodymakers can generate excessive dynamic loads.

A recent project for Farrat in Cairo, Egypt, was to establish whether a pre-existing isolated foundation could be used for new manufacturing equipment. A member of our Industrial Vibration Isolation team made a visit to the factory to assess the level of performance of some existing isolated foundations that are currently supporting bodymakers.

These results have been used to determine if a spare isolated foundation installed 10 years ago and presenting the same design could be used to support new machine in the near future.

Not only would this enable a significant financial saving but would also negate the need for digging out new isolated foundations and the associated materials and disruption. In addition, repurposing something already in place is a more environmentally friendly option for a business that creates a product that can be recycled an infinite number of times.

Engineering led vibration and noise measuring and analysis

To determine whether existing infrastructure could be used for effective vibration control, contact the Farrat vibration and noise consultancy team, who work with a wide range of clients across the manufacturing sector, using on-site portable instrumentation for vibration measurement and vibration analysis around the world.

#onamission

Upcoming Webinar: The significance of Structural Thermal Breaks in high rise fire design and Building energy performance

Farrat is partnering with the Institute of Structural Engineers this June to produce a new webinar on the significance of Structural Thermal Breaks in high rise fire design and building energy performance. This webinar is ideal for designers, architects, engineers, and specifiers, who are looking to go beyond the standard in fire design and energy efficiency.

Since the tragic circumstances of the Grenfell disaster, designing for fire construction material choice in all its facets has become a focus of design teams across the world. In balance, the global demand for energy efficiency and net-zero carbon pulls designers in an equally important direction.

This webinar with Farrat looks through the lens of Structural Thermal Breaks at the multi-role demands of building components to deliver best-in-class performance in sustainable credentials and building physics without compromising on fire safety.

The webinar will assist designers in understanding:

  • The latest developments in UK Fire and Building Safety regulations
  • Current requirements for specifying safety-critical building products
  • Up to date thought on the UK standards for construction material performance information
  • Current direction and time frame for Structural ‘Green’ Steel and the journey towards Net Zero
high rise fire design

Date: Tuesday 21st June

Time: 9 – 10am BST

Presenter: Chris Lister. Commercial Manager – Structural Thermal Breaks

Chris Lister is the Commercial Manager for Farrat Structural Thermal Breaks and British Construction Steel Association BCSA National Council Member. Having studied both Engineering and Architecture he has worked exclusively in the construction and building product design sector, in both senior technical and commercial roles.

At Farrat he is principal in the development of Farrat Structural Thermal Break products and facade design solutions. He’s a passionate contributor to the global discussion on fire safety in high-rise structures and building physics research and advocate for achieving the highest level of energy efficiency in building design.

Chris is a dedicated father, diehard Rugby player, and fair-weather motorcyclist.

The top 5 questions asked by engineers when specifying structural thermal breaks

The ability to transmit structural loads whilst addressing thermal performance through a building envelope has long been a difficult balance for building designers. The weight of decision has often fallen on the side of the structure, with the importance of structural integrity winning out against the impact of structural members piercing the thermal envelope.

However, as the energy demands of new and retrofit buildings have grown, so have the requirements to minimise that energy usage and the potential of issues such as thermal bridging.

This has resulted in greater levels of insulation in planar elements of a building envelope, leading to more noticeable and detrimental effects of those ‘hard to treat’ details such as structural penetrations. Add to this the need to achieve compliant critical internal temperature factors for the avoidance of unsightly or harmful mould growth and mitigating thermal bridges in a building envelope moves higher up the list of problems to solve.

Equally, the growing influence of fire design on structures has also led to the requirement for enhanced performance criteria of building materials in relation to fire that are incorporated into the building envelope. To address this imbalance, new building materials and methods of thermally breaking structural connections, such as steel beams and balcony connections, have been developed.

In the below guide, we address the most frequent questions asked by Structural Engineers when specifying Farrat Structural Thermal Breaks.

1. Which Farrat Structural Thermal Break material should I specify?

Farrat Structural Thermal Breaks take the form of flat plates of any dimensions, which provide Architects with complete design freedom and Structural Engineers the capability to design to standard codes, with a simple configuration.

Farrat offer three independently tested Structural Thermal Break materials, which are designed to balance high structural performance and low thermal conductivity:

  1. Farrat TBK (Yellow) is most specified across typical connection details, with high compressive strength (312MPa fck) and the best thermal performance in the range (0.187 W/mK).
  2. Farrat TBF (silver) is the optimum material when fire performance is a consideration, such as within high-rise buildings, due to its high compressive strength (355MPa fck) and low thermal conductivity (0.2 W/mK) performance characteristics, supported by an A2, s1,d0 Non-Combustible Classification.
  3. Farrat TBL (Black) is the favourable material when structural loadings and requirements for thermal performance are lower, and budgets are constrained, offering medium compressive strength (89MPa fck) and thermal conductivity (0.292 W/mK) performance characteristics.

2. How do I design connections incorporating Farrat Structural Thermal Breaks?

A breakdown of what to consider when designing structural steel connections is contained within the Farrat Structural Thermal Break Technical Guide and supporting SCI, Steel Construction Institute assessment document.

As an overview:

  1.  Structural Thermal Break plates should be considered as a “pack” in terms of connection design.
  2. All Shear forces need to be accommodated by the connection bolts. As a result of the multiple layers in the connection the grip length of the bolts may be significantly increased, it may also be necessary to reduce the anticipated shear resistance of the bolts in the connection.
  3. Reference should be made to BS EN 1993-3 1-8: 2005 Eurocode 3. Design of steel structures.

Example screenshots adjacent are taken from the Farrat extension for Tekla Structures that creates Farrat Structural Thermal Break connection plates. The component automatically takes the plate dimensions and holes of the plate it is fixing to.

3. Can Farrat Structural Thermal Breaks support the loads I am designing for?

The exact physical and mechanical properties for Farrat Structural Thermal Breaks are contained in the Farrat Structural Thermal Break Technical Guide.

As a quick guide:

  1. Farrat TBF and Farrat TBK materials offer compressive strength comparable with Steel.
  2. Farrat TBL has a compressive strength greater than Concrete.
  3. Structural Thermal Break plates in a connection should only be designed to resist compressive forces.
  4. Consideration should also be taken of compressive creep. Farrat materials are formulated to resist long term creep, but this element should be factored into any design.
  5. Many materials which exhibit good thermal properties have poor long term creep profiles.
  6. Reference should be made to BS EN 1993-3 1-8: 2005 Eurocode 3. Design of steel structures.

4. What is the friction coefficient for Farrat Structural Thermal Breaks?

The coefficient of friction of a thermal break plate is not a relevant property for the structural design of connections with non-pre-loaded bolts.

Whilst figures for frictional resistance of Farrat Structural Thermal Breaks can be obtained, it will differ depending on the material with which it is in contact and should be treated with caution when designing connections involving Preloaded or TCB bolts.

5. Will Farrat Structural Thermal Break plates achieve a 120-minute fire rating?

Structural steel connections that require a 120-minute fire rating will typically need to be protected with either an intumescent coating system or a fire protection board. In all situations, the Structural Thermal Breaks should receive the same level of protection as the steel.

However, Farrat TBF Structural Thermal Breaks have been tested unprotected in fire conditions, in structural steel connections, to temperatures more than 1000°C for 120 minutes and maintained structural integrity.

Different building types and legislators have differing technical and regulatory requirements for fire design, but if fire is a concern that requires addressing, then the use of non-combustible thermal breaks is one way to mitigate that risk.

Farrat TBF fire test
Farrat TBF fire test

In summary, when designing for Structural Thermal Breaks:

  1. Check that the chosen material is independently verified to resist the applied compression forces, with an appropriate safety factor applied to determine design loading.
  2. Check that any additional rotation due to compression of the thermal break plate is acceptable.
  3. Check the shear resistance of the bolts is acceptable given that there may be a reduction due to the use of packs and larger grip lengths.

If using Pre tensioned bolts:

  1. Check the slip resistance of the connection considering the coefficient of friction and the number of surfaces.
  2. Check the thermal break plate can resist the local compression forces around the bolts.

Where fire performance is concerned:

  1.  Consult with Farrat for the correct specification of fully tested and certified materials.

 


 

For more information on integrating thermal break solutions into typical, or bespoke, structural steel connections, visit our Structural Thermal Break hub or one of our dedicated portals:

#onamission

The top 5 questions asked by architects when specifying structural thermal breaks

The ability to transmit structural loads whilst addressing thermal performance through a building envelope has long been a difficult balance for building designers. The weight of decision has often fallen on the side of the structure, with the importance of structural integrity winning out against the impact of structural members piercing the thermal envelope.

However, as the energy demands of new and retrofit buildings have grown, so have the requirements to minimise that energy usage and the potential of issues such as thermal bridging.

This has resulted in greater levels of insulation in planar elements of a building envelope, leading to more noticeable and detrimental effects of those ‘hard to treat’ details such as structural penetrations. Add to this the need to achieve compliant critical internal temperature factors for the avoidance of unsightly or harmful mould growth and mitigating thermal bridges in a building envelope moves higher up the list of problems to solve.

Equally, the growing influence of fire design on structures has also led to the requirement for enhanced performance criteria of building materials in relation to fire that are incorporated into the building envelope. To address this imbalance, new building materials and methods of thermally breaking structural connections, such as steel beams and balcony connections, have been developed.

In the below guide, we address the most frequent questions asked by Architects and Building Envelope specialists when specifying Farrat Structural Thermal Breaks.

1. Which Farrat Structural Thermal Break material should I specify?

Farrat Structural Thermal Breaks take the form of flat plates of any dimensions, which provide Architects with complete design freedom and Structural Engineers the capability to design to standard codes, with a simple configuration.

Farrat offer three independently tested Structural Thermal Break materials, which are designed to balance high structural performance and low thermal conductivity:

  1. Farrat TBK is most specified across typical connection details, with high compressive strength (312MPa fck) and the best thermal performance in the range (0.187 W/mK).
  2. Farrat TBF is the optimum material when fire performance is a consideration, such as within high-rise buildings, due to its high compressive strength (355MPa fck) and low thermal conductivity (0.2 W/mK) performance characteristics, supported by an A2, s1,d0 Non-Combustible Classification.
  3. Farrat TBL is the favourable material when structural loadings and requirements for thermal performance are lower, and budgets are constrained, offering medium compressive strength (89MPa fck) and thermal conductivity (0.292 W/mK) performance characteristics.

 

 

2. What thickness of thermal break should I specify?

Farrat Structural Thermal Breaks come in a range of thicknesses from 5mm t0 25mm. The only way to accurately calculate the thickness of a structural thermal break is to carry out finite element analysis on the connection and its allied components. This is not common practice due to the relative rarity of details requiring Structural Thermal Breaks and the time and cost of carrying out the thermal modeling.

However, it is possible to understand from a typical example the effects of thickness of plates on example connection.

Farrat illustrates this for their products using BRE (Building Research Establishment) certified thermal models, which show that despite achieving a lower thermal performance than the surrounding building fabric, it is possible to remove the negative effects of a cold bridge with a minimal amount of insulating material (typically a 15mm -25mm thickness). Plates may be used in multiples, but 25mm will mitigate most thermal bridge issues for dwellings and commercial office building details.

3. Do Structural Thermal Breaks need to be as thick as the surrounding wall insulation?

The primary determinate for the thickness of a Structural Thermal Break is its effect in achieving a satisfactory critical internal temperature factor on the warm side of the structural connection. It is not necessary for the Structural Thermal Break thickness to match the surrounding wall insulation thickness to be a success.

Since the thermal break is required to be a structural element, it will always be a relative weak point as an insulant.

However, as illustrated in Farrat’s latest Passive House Certified Details, this still makes it possible to achieve the highest of building performance standards.

4. Will the Structural Thermal Break meet my U value requirements?

U value calculations are the simple method of understanding the thermal performance of a build-up of construction materials in a flat plane (planar). Structural Thermal Breaks are typically used to solve problems in ‘point’ structural connections or in some case linear connections. As such their performance cannot be calculated using the U value method of calculation and require a Psi or Chi value calculations to be undertaken.

These calculations can only be undertaken using 2D or 3D finite Element Analysis (FEA) modelling.

As this is currently not common practice, Farrat utilise their typical BRE Certified Thermal Models, to provide indicative Psi and Chi values for common structural connections to allow simplified specification of structural thermal breaks where calculation models have not been created.

 

 

5. Do Structural Thermal Breaks need to be Non-combustible?

The use of non-combustible materials, particularly in high-rise buildings has become more commonplace in recent years due, in part, to high-profile building fires and subsequent investigations.

Structural Thermal Breaks are extensively used as part of the structural support in façade systems or as the main structural connection in balconies. These elements are key to the performance of the building envelope in the case of fire and the avoidance of catastrophic failure and collapse.

Farrat TBF is an A2,s1,d0 non-combustible Structural Thermal Break material that is capable of withstanding 1000°C heat and maintains its structural integrity in the event of a fire.

Different building types and legislators have differing technical and regulatory requirements for fire design, but if fire is a concern that requires addressing, then the use of non-combustible thermal breaks is one way to mitigate that risk.

Farrat TBF

For more information on integrating thermal break solutions into typical, or bespoke, structural steel connections, visit our Structural Thermal Break hub or one of our dedicated portals:

 

#onamission

How Tuned Mass Dampers can cure torsional vibration problems on large milling machines

Farrat works with Production Engineers and OEM’s (Original Equipment Manufacturers) within high-capacity rolling mills around the world, to ensure the accuracy and efficiency of a wide range of machinery through vibration control.

A key role we play within the rolled metal and aluminum industry is preventing ‘chatter’.

Chatter refers to the inaccuracies and/or faults in the finish of a manufactured product as a result of vibration sources impacting machine accuracy.

In the recent case study below, we demonstrate how Tuned Mass Dampers can be used as an effective industrial vibrational solution for large milling machines.

The Scenario

Farrat was contacted by the Production Manager at a global aeronautics company, who had identified reporting issues with the performance of a large milling machine within a busy manufacturing plant.

The milling machine was used to machine titanium aero-engine components; therefore, accuracy was essential for the precision part.

On further inspection by Farrat Applications Engineers, the machine was noticeably severely hampered by chatter instability, occurring at the 64 Hz frequency.

torsional vibration problems
torsional vibration problems graph

The Investigation

Farrat Applications Engineers conducted modal analysis to measure the effects of vibrations on surrounding machinery, as well as activity on the milling machine. The data showed that torsional resonance of the spindle and drivetrain was causing the issue.

If left unresolved, the chatter disturbance would continue and potentially worsen as the effects of the vibration increasingly affected the milling accuracy.

The Conclusion

In order to reduce the effects of the surrounding vibration, a vibration Tuned Mass Damper was fitted to the rear face of the milling cutter. The damper was then carefully tuned to the specific frequency of the torsional resonance that was disrupting the performance of the milling machine, resolving the torsional vibration problems.

As a result of this damper being installed, the chatter was completely eliminated, and the milling machine has performed at the required level of accuracy ever since.

 

For more information on how we’re supporting manufacturers and machine refurbishers with our vibration consultancy, analysis, and troubleshooting services, take a look at our Industrial Vibration Isolation hub or contact our Industrial Applications team.

 

#onamission

Resolving torsional vibration problems Tuned Mass Damper

National Apprenticeships Week – supporting the next generation of engineers

This week is the 15th annual week-long celebration of apprenticeships, and Farrat is on a mission to show how accessible mentoring and practical experience is key to ensuring that young people from all walks of life have access to opportunities in engineering and manufacturing.

Farrat will be joining forces with the Social Mobility Foundation, a charity which aims to make a practical improvement in social mobility for high achieving 16–17-year-olds from low-income backgrounds who have the ability to flourish in the top professions, but who lack the networks and guidance in their field to fulfil their potential.

We will be supporting the Social Mobility Foundation through their Aspiring Professionals Programme, helping students via mentoring, work placements, further education application advice and professional skills development sessions.

Having already worked with the Social Mobility Foundation in 2021, with work placement access for those looking for a good insight into what it means to work for an engineering company with global reach, we are excited to put extended time and effort into nurturing the engineering talent of the future.

Mentors at Farrat

Those from Farrat acting as mentors will support students in a number of ways, including increasing their understanding of their desired career and professional life. The mentoring relationship is extremely valuable in helping to guide mentees through their time on the Social Mobility Foundation programme, their further education or university applications, and in helping them to explore their professional interests further.

“A key part of our Farrat vision is a sustained commitment to local communities, STEM and social mobility, and in 2022 we will be working towards ambitious targets within our social mobility success pillar, to support young and socially disadvantaged people in our community,” states Sally Moxon, Head of People at Farrat.

“At Farrat, we believe it is so important to build a diverse workforce of talent for the future, as well as giving something back to the communities in which we live and work. Our partnership with the Social Mobility Foundation will be instrumental in helping us to provide opportunities to talented young people and help them to fulfil their potential, both now and in their future careers.”

On a mission to reduce the engineering skill shortage in the UK

Not only will this be rewarding for those involved and helpful to the young people being mentored, but this will help to safeguard the future of engineering in the UK.

The UK needs to significantly increase the number of people with engineering skills. In 2014, it was reported that the annual shortfall of STEM skills was 40,000. In 2017, the annual shortfall of the right engineering skills was still anywhere between 25,500 and up to 60000.

We need to double, at least, the number of UK based university engineering students. Encouraging young people from a wider range of backgrounds that might not have had the knowledge or means to go into engineering, will not only reduce this skills shortage, but bring exciting new perspectives to the sector.

Find out more

To learn more about Farrat’s upcoming social mobility projects, follow us on LinkedIn, Twitter, and Instagram where we regularly share stories about our people, industries, and the wider community.

Or get in touch with the Social Mobility Foundation to find out more about accessing the Aspiring Professionals Programme.

Industrial Vibration Isolation – a showcase of our latest projects

In our latest project showcase below, we share a few of our recent Industrial Vibration Control projects, which highlight how our expert vibration control systems are being used to maximise accuracy, efficiency, and ensure the health & safety of production employees across can making and power generation industries.

The Lakeside EfW facility, UK

Based near Slough, this energy from waste power plant processes over 450,000 tonnes of residual waste per year, whilst generating 306GWh of power. It led the way in terms of environmental impact back in 2017, by becoming the first in the country to achieve the zero waste to landfill target by recycling all the residues left behind from waste processing and turning it into sustainable energy.

An education centre is located adjacent to the facility, where schools and other groups can learn about sustainable waste management and energy from waste to promote the switch to zero waste in the future.

Farrat have designed and manufactured a bespoke vibration control system, which is currently being installed on critical overhead machinery within the facility, to maximise efficiency and minimise the effects of vibration on the surrounding structure.

Lakeside facility Industrial Vibration Isolation

Farrat NR62 Hybrid Bearings and bespoke Shear Key Bearings form part of the overall solution to support the crane structure.

Cylon Cans Isolated Foundations

Ceylon Beverage Can, Sri Lanka

This is the most advanced facility in the region with state-of-the-art technology in metal forming and printing. The plant is equipped with the latest machinery and quality gauges with the capacity of producing 720 million cans and 2 billion ends per year. With cans as a highly recyclable liquid packaging option on the increase due to their sustainability credentials, the efficient running of this facility is essential to meet demand.

Farrat recently completed a machine foundation isolation project for a cupper press and bodymaker that was installed on site. The vibration isolation system comprised of Farrat Isomat , which is made from Nitrile rubber, and Vidam, which is made of cork composite.

Farrat Isomat offers excellent damping characteristics for impact applications such as presses, while Vidam works well to damp lateral loads coming onto the foundation walls. Together the anti-vibration materials work to mitigate the impact of vibration on the machinery, and ensure high levels of productivity and efficiency.

Pomini Tenova, Italy

Pomini Tenova is a global leader in the production of roll grinders, for rolls belonging to flat products mills such as steel and other non-ferrous metals such as copper and aluminum, processed in beverage can manufacturing plants and paper mills. Pomini Tenova also delivers special machines for the grinding of heavy components across the industrial sector.

A bespoke Farrat Isolated Foundation system was recently supplied for two roll grinding machines, that went on to be installed at a sheet metal plant in the United States.

This form of precision equipment should be protected from all sources of external vibrations, to avoid chatter marks on the finished rolls (reducing wastage), and also to ensure the health & safety of both the machinery and employees.

Pomini Tenova Isolated Foundations

The Farrat industrial vibration isolation solution was engineered from a combination of Farrat Isomat base isolators and Farrat Isofoam Wall isolators. This solution effectively isolates all incoming frequencies from the base, as well as walls of the foundation, and improves the overall efficiency of the machine.

On a mission across the globe

The growth of the can-making industry means that with the right incentives, liquid packaging using cans could become 100% recyclable, and our vibration isolation solutions ensure that the manufacturing of these cans and tops can be done at optimal levels of productivity and efficiency.

Where businesses are committing to zero waste, onsite recycling, and energy generation through original approaches, Farrat is equally committed to using our specialist knowledge and bespoke vibration isolation solutions to optimise these innovative solutions.

 

For more information on Farrat Industrial Vibration Isolation solutions including Isolated Foundations take a look at our Industrial Vibration Control centre, or our  Can Making Hub.

 

#onamission

The role of sustainable building materials in the race to net-zero

It has been widely shared that buildings and construction are responsible for almost 40% of global carbon emissions driving rapid climate change.

But, did you know that at the current rate of construction, the world is forecast to build more than 2 trillion square feet of floor space in the next 40 years? In their current form, a considerable proportion of these buildings will be constructed out of concrete, with cement as its main ingredient (a notorious greenhouse gas emitter).

A simple route to reducing carbon emissions in the race to net-zero is to design and build smarter. By this, we mean reducing the volume of materials required in construction, reusing/repurposing where possible, and opting for high-performance materials with superior efficiency credentials at the point of the specification.

This sentiment is echoed in a recent report published by the Royal Academy of Engineering on ‘Decarbonising Construction’, which notes that the following aspects will be vital in achieving net-zero transformation in the construction sector:

  • availability and specification of low-carbon materials,
  • reusing materials as standard,
  • and low-carbon procurement.

In our latest insight below, we further explore the role of sustainable building materials in the built environment to understand how our Structural Thermal Break solutions align with the agenda.

Utilising sustainable building materials in construction

Reduce, recycle and reuse

Structural steelwork and lightweight gauge steel can be recycled and reused multiple times. As a result, steel is increasingly selected as a reliable material for constructing robust structures that meet the low carbon demands of the future without compromising on design, practicality, or cost-efficiency.

The recovery rates from demolition sites in the UK are 99% for structural steelwork and 96% for all steel construction products – figures that far exceed those for any other construction material. And the superior strength-to-weight ratio of steel as a construction material, also means that a little goes a long way. This unique characteristic gives steel a high economic value at all stages of its life cycle.

By utilising more recyclable building materials, the industry contributes to more sustainable development by reducing waste and by saving primary resources. Recycling materials such as steel and other metals also save energy and reduce carbon emissions, since it requires less energy to re-melt scrap than it does to produce new metal from primary resources, i.e., iron ore.

The primary benefits of recycling sustainable building materials are well understood and include:

  • Reducing waste, i.e., diverting waste from landfill
  • Saving primary resources, i.e., substituting primary production
  • Saving energy and associated greenhouse gas emissions through less energy-intensive reprocessing.

Although these benefits apply to many commonly recycled materials, there are some significant differences in the properties of materials that influence the environmental benefit of recycling and particularly how these benefits are quantified.

Metals, for example, are infinitely recyclable, i.e., they can be recycled repeatedly into functionally equivalent products – this is the most environmentally beneficial form of recycling.

Other products are ‘down-cycled’ into new products that are only suitable for lower grade applications because the recycled product has different, usually lower, material properties. Although waste is diverted from landfills by down-cycling, only lower-grade primary resources are saved.

For example, crushing bricks and concrete for hardcore, sub-base, or general fill saves aggregates but does not save the resources required to make new bricks or new concrete.

BHC Steelwork - Cineworld Hounslow starts on site

BHC steelwork erection at Cineworld Hounslow in 2019

For recycling to be sustainable in the long term, it is important that the recycling process is financially viable. This is frequently the biggest hurdle to recycling, particularly for products and materials that are downcycled into lower grade, low-value applications.

Current end-of-life scenarios for three of the most common construction materials; concrete, timber and steel are shown below. The illustration describes the end-of-life outcomes of these materials against the established UK Waste Hierarchy:

end of life scenarios
Source: steelconstruction.info from the British Constructional Steelwork Association (BCSA)

Moving towards more sustainable procurement

Steel production is currently a source of greenhouse gas emissions (7% in 2020); however, the good news is that a revolution in steel production is now within reach.

The amount of energy used in steel manufacture has fallen by some 61% since the 1960s, according to World Steel Association data (2020), and further improvements are being sought from steel sector research and development investments.

In 2020, 1.8 gigatons (GT) of steel were produced, accounting for 90% of all metals globally. Major steel-producing countries, including China, Japan, the EU, and now the US, have set ambitious targets to reach net-zero economies. Achieving these demands will further advance the material efficiency of steel and the greater recycling of scrap steel.

In 2005, the British Constructional Steelwork Association (BCSA) became the first steel representative organisation in the UK to launch a Sustainability Charter. This was updated and strengthened in 2021 in response to the climate emergency. The objective of the Charter is to further advance steel as a sustainable form of construction in terms of carbon reduction, reuse and efficiency, economic viability, social progress, and environmental responsibility.

Similarly, leading manufacturers and suppliers of structural steel in the UK, British Steel, and Tata Steel, are certified under the BRE Environmental & Sustainability Standard BES 6001, a responsible sourcing certification for the UK construction market.

For these companies, sustainable procurement is part of wider corporate responsibility.

Severfield installing steel connections with Farrat TBK Structural Thermal Breaks at 22 Bishopsgate, London

Thermal efficiency in modern steel design

In respect of the energy efficiency of buildings constructed with steel, low and zero-carbon buildings, and buildings with high BREEAM ratings are readily achievable using steel construction.

Structural Thermal Breaks are commonly integrated into primary and secondary steel connections as high-performance thermal insulators that provide a robust solution to minimising energy loss in steel construction.

Performance characteristics of Farrat thermal break materials include low thermal conductivity, high compressive strength, and limited creep under load, which provides Steel Contractors and Structural Engineers with complete flexibility to modify typical structural steel details with confidence, without compromising thermal efficiency or conformance.

And unlike general thermal insulation materials on the market, Farrat Structural Thermal Breaks are suitable to mitigate against planar, linear, and point load thermal bridging whilst carrying structural loads, which means that they can be used anywhere a penetration or transition exists in a building envelope, helping Architects and designers to achieve the highest levels of building performance and energy standards.

Thermal efficiency credentials

Passive House is one of the highest standards for energy efficiency, granting certification to structures, components, and professionals who have achieved and designed the best in quality, efficiency, and sustainability. The criteria to gain the title of ‘Certified Passive House Component’ is based on two categories: living health and comfort (‘Comfort criteria’) and energy balance during practical application (‘Energy criteria’).

In 2019, Farrat’s high-strength Structural Thermal Break material Farrat TBK, was listed as a Certified Passive House Component by the Passive House Institute in recognition of its low thermal conductivity and superior energy efficiency performance.

Following this in 2020, Farrat’s A2 non-combustible fire-rated Structural Thermal Break material, Farrat TBF, was entered as an approved product into the BRE (Building Research Establishment) Certified Thermal Details and Products Scheme and was also awarded BBA (British Board of Agreement) certification.

The BRE is an international independent certification body, operating with the highest standards in the certification of fire, security, and environmental products and services, management processes, and other products and systems. Details provided within the BRE scheme are invaluable to building design professionals committed to creating energy-efficient structures and are especially useful for architects and structural engineers at the specification stage.

BRE Certified Thermal Details for both Farrat TBK and Farrat TBF thermal breaks are available online here.

“We have always placed a strong emphasis on impartial assessment and certification for our structural thermal break materials,” says Chris Lister, Commercial Manager of Structural Thermal Breaks at Farrat.

“It enables us to back up our commitment to creating cutting edge materials with practical value and sustainability, for buildings and structures of the future.”

Summary

Specifiers and contractors are responsible for addressing some of the biggest challenges facing the building construction industry in the race to net-zero.

Meeting these challenges head-on in terms of innovative energy efficiency, intelligent building design, and responsible sustainable building materials choices will be a key driver in reaching sustainability targets and safeguarding the future of the world.

For more information on integrating thermal break solutions into typical, or bespoke, structural steel connections, visit our Structural Thermal Break hub or one of our dedicated portals:

 

#onamission

Farrat Building Acoustics – latest cinema acoustic isolation projects

Utilising over 60 years’ experience in acoustic isolation, Farrat created the Cine range as the ultimate answer to the cinema market’s most demanding acoustic challenges.

Cine is the first range of high-performance building acoustics solutions designed specifically for cinemas and offers cinema designers, contractors, and cinema operators a ‘simple-to-select’ acoustic isolation solution for floors, raked seating, and walls, in auditoriums of all shapes and sizes.

In our latest project showcase, we demonstrate how the full Cine range of acoustic isolation solutions are typically integrated into new build and retrofit cinemas, to create truly immersive experiences for audiences.

East Square Basildon

East Square is a vibrant new development designed to give a fresh lease of life to Basildon town centre, as a ‘one-stop shop’ for leisure, shopping, dining, and seeing the latest films.

Included in the scheme is the delivery of a new 10 screen Empire Cinema that will feature the largest Empire cinema screen in the south-east, with a capacity to fit 500 viewers.

Farrat designed, supplied, and installed our highest grades of cinema acoustic isolation solutions throughout the project, including CineWALL PRO and CineWALL MAX, CineSTEEL PRO and CineSTEEL MAX, and CineFLOOR PRO.

CineFLOOR acoustic floating floors are considered a staple in any new-build auditoria, as they suffer no compromises from low mass or high stiffness isolators. The CineFLOOR PRO floating slabs, as used in this project, are designed and manufactured with ease of installation, durability and follow-on trades in mind.

east square basildon
image Essex Live

CineFLOOR PRO can be designed with a fully fibre reinforced concrete to allow easy seat installation without the risk of hitting the rebar. Self-compacting concrete can also be used to ensure high flatness tolerance is achieved to allow vinyl or carpet to be laid directly on top of it.

Farrat Installation Services was established for the sole purpose of offering combined acoustic flooring and concrete installation services, specifically due to the value that contractors place on having these two items wrapped up within one warranty, which minimises risk for the client.

Contact Farrat Technical here for further advice and information regarding floating slab design.

cineworld belfast
image from Cineworld

Cineworld, Belfast

Cineworld in Belfast opened in December 2021 and is the first Cineworld cinema in Northern Ireland. The multiplex includes 14 screens, 2750 seats, and the immersive viewing experiences of IMAX, 4DX, and a 270-degree ScreenX.

Farrat designed and supplied CineSTEEL MAX for this project, due to its proven and reliable secondary steelwork isolation performance within raked seating. The CineSTEEL system is based on hot-rolled structural steel, supporting 100 mm concrete stadia, and can be used in both cast-in-situ and pre-cast arrangements.

Designed specifically with program-conscious contractors in mind, CineSTEEL acoustic isolation materials are all held in stock for rapid turnaround despite comprising bespoke-cut isolators.

Contact Farrat Technical here for further advice and information regarding secondary steelwork isolation design.

Cinema Arcadia, Stezzano, Italy

Independent cinema operator Arcadia, opened the 7-screen Arcadia Stezzano theatre in November 2021. Located outside Milan, this multiplex cinema is part of the wider expansion of the Le Due Torri Shopping Center in Stezzano, and is the first new theatre opened by an independent Italian cinema operator since the COVID19 outbreak.

Arcadia Stezzano is also the first cinema in Italy with 2 auditoriums equipped with Dolby Atmos-Meyer Sound Immersive Audio, and the first theatre in Italy with 4K laser Christie projectors in all auditoriums.

Farrat supplied both CineWALL PRO and CineFLOOR PRO, as part of a high-performance acoustic isolation solution designed to ensure a premium viewing experience for audiences.

ARCADIA Stezzano Italy
image from CelluloidJunkie

Used in more than 100 multiplex cinemas around the world, CineWALL PRO is our most frequently specified grade of partition base track isolation, as it offers the highest ratio of acoustic isolation performance vs price. CineWALL acoustic isolation strips can be used in a double layer arrangement to increase the acoustic isolation performance without affecting the maximum load capacity or installation detail. And each grade has a high load range allowing it to be used with a wide selection of wall heights.

Contact Farrat Technical here for further advice and information regarding partition isolation design.

For more information on Farrat cinema acoustic isolation solutions, the Farrat Cine range, and the range of cinema projects we have worked on around the world, please contact our team or visit our Cinema Hub here.

#onamission

Structural Thermal Breaks – a showcase of energy efficiency projects

We are pleased to share a few of our recent and upcoming projects, which highlight where Structural Thermal Breaks are commonly utilised across the building  construction industry to maximise energy efficiency.

Medius House, central London

As part of the redevelopment and refurbishment of Castlewood House and Medius House on New Oxford Street, this scheme will deliver 20 new affordable homes built over retail units in a central location, without losing the Grade II-listed façade of the existing building.

Farrat are working with Skanska to achieve the highest standard of structural and thermal insulation, with the supply of our high-strength, fire-rated Structural Thermal Break material Farrat TBF.  In a densely populated area such as central London, energy efficiency and fire safety are both vital considerations. Using an A2 Non-combustible thermal break not only achieved energy reducing thermal performance at the structural penetrations but also ensured the highest levels of building envelope fire safety.

The £83M design and build project is still in progress and we look forward to it’s completion in the future.

Medius House Farrrat FTB
Millford Green
Millford Green - image from Open Doors Construction

Millford Green

Farrat are supporting Willmott Dixon to deliver their first net-zero carbon project, with the supply of our low thermal conductivity and high compressive strength Structural Thermal Break material: Farrat TBK. Farrat TBK is the optimum balance of thermal and structural performance being as strong as steel but with over 100% better insulation performance.

The state-of-the-art carbon-neutral retirement living village will compromise of 80 apartments and one assisted living block at the centre of a sustainable village complex. Additional facilities will include a restaurant, swimming pool, yoga deck, library, craft room, and bike and buggy stores.

Gorton Community Hub

Gorton Community Hub is a new £22m community hub recently approved by Manchester Council for construction on a brownfield site in the previous location of a suburban pub.

Farrat is supplying A2 fire-rated Structural Thermal Breaks for integration into the steel-to-steel connections, to ensure structural integrity whilst assisting in achieving the highest levels of thermal performance.

The facility is set to be a ‘one-stop shop’ at the heart of the local community, which will enable residents to access much-needed services – bringing together doctor’s surgeries, mental health care services, and a library in one centre.

Farrat will supply A2 fire-rated Structural Thermal Breaks for integration between steel connections, to ensure structural integrity and provide high-performance thermal insulation.

Gorton Community Hub - image from Manchester Council

Travel Lodge Est Docklands

Farrat are supporting PTSG Access to deliver a new build contemporary Travelodge in the East India Dock area of London Docklands, on an undeveloped nearby brownfield site.

As well as allowing solid structural connections between external elements and the main structure, Farrat Structural Thermal Breaks reduce the heat sapping effects of thermal bridges making it possible for designs to meet the stringent energy performance requirements of a modern building.

The design is further reflective of the hospitality industry’s new focus on reducing their impact on the environment, with 40 percent of all parking spaces assigned as electric charging points. The hotel will also feature a ‘pocket park’ with enhanced landscaping to the perimeter with planting designed to mitigate air pollution.

Engineers on a mission for 2022

Farrat supports clients to deliver a wide range of projects across the world, with an increasing focus on social usefulness, energy efficiency, and sustainability. This might include bringing integrated services to regions that need them, working around issues surrounding utilising brownfield sites over greenfield, the promotion of the most reusable and recyclable materials such as steel, and superior insulation.

We are dedicated to continuing to work alongside forward-thinking partners and clients in 2022 to create the most energy-efficient and sustainable buildings, without compromising on design.

#onamission